Substituent Effects on Transient, Carbodiimide-Fueled Geometry Changes in Diphenic Acids

09 June 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Nucleotide-fueled conformational changes in motor proteins are key to many important cell functions. Inspired by this biological behavior, we report a simple chemical system that exhibits carbodiimide-fueled geometry changes. Bridging via transient anhydride formation leads to a significant reduction of the twist about the biaryl bond of substituted diphenic acids, giving a simple molecular clamp. The kinetics are well-described by a simple mechanism, allowing structure–property effects to be determined. The kinetic parameters can be used to derive important characteristics of the system such as the efficiencies (anhydride yields), maximum anhydride concentrations, and overall lifetimes. Transient diphenic anhydrides tolerate steric hindrance ortho to the biaryl bond but are significantly affected by electronic effects, with electron-deficient substituents giving lower yields, peak conversions, and lifetimes. The results provide useful guidelines for the design of functional systems incorporating diphenic acid units

Keywords

dissipative assembly
nonequilibrium
diphenic acid
carbodiimides

Supplementary materials

Title
Description
Actions
Title
SI - Main
Description
Actions
Title
SI - Concentration vs time data
Description
Actions
Title
SI - Geometries
Description
Actions
Title
SI - kinmodel
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.