A Bifunctional Copper Catalyst Enables Ester Reduction with H2: Expanding the Reactivity Space of Nucleophilic Copper Hydrides

08 June 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Employing a bifunctional catalyst based on a copper(I)/NHC complex and a guanidine organocatalyst, catalytic ester reductions to alcohols with H2 as terminal reducing agent are facilitated. The approach taken here enables the simul-taneous activation of esters through hydrogen bonding and formation of nucleophilic copper(I) hydrides from H2, resulting in a catalytic hydride transfer to esters. The reduction step is further facilitated by a proton shuttle mediated by the guani-dinium subunit. This bifunctional approach to ester reductions for the first time shifts the reactivity of generally considered “soft” copper(I) hydrides to previously unreactive “hard” ester electrophiles and paves the way for a replacement of stoichi-ometric reducing agents by a catalyst and H2.

Keywords

catalysis
hydrogenation
bifunctional catalysis
esters
reduction

Supplementary materials

Title
Description
Actions
Title
Teichert bifunctional ester reduction SI ChemRXiv
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.